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Abstract 

As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominate the per- 
formance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the 
shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key 
issues governing memory system performance in current systems are not well understood. Complex interactions between the 
levels of the memory hierarchy, buses or switches, DRAM back-ends, system soware, and application access patterns can 
make it difiult to pinpoint bottlenecks and determine appropriute optimizations, and the situation is even more complex for 
SMP systems. To partially address this problem, we h e  formulated a set of multi-threaded microbenchmarks for charac- 
terizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We 
report our use of these microbenchmarks on two important SMP-based machines. 

This paper has four primary contributions. First, we introduce a microbechmark suite to systematically assess and com- 
pare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware 
performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and eas- 
ily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many 
fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of ap- 
plications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level 
parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based 
memory interconnects. 

1 Introduction 

The speed gap between CPU and main memory is already large, and it continues to grow: CPU speeds double about 

every 18 months, whereas main memory speeds double about every ten years. Worse, evidence indicates that this trend will 
'This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory 

under contract No. W-7405-Eng-48. 
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continue. This implies that the time to access the memory system will continue to dominate the performance of many applica- 

tions. This is especially true in the realm of high-performance, parallel computers, where we have observed CPU utilization 

rates as low as about 5% - precisely because the memory system cannot provide data as fast as the application needs it. 

Using the memory efficiently is therefore crucial to achieving good system utilization. Unfortunately, several key issues gov- 

erning memory system performance in current systems are not well understood. For instance, as user applications execute, 

they exhibit a variety of memory access patterns, including non-unit strided accesses and indirect accesses through pointers 

or indirection vectors. Traditional summary measures like dache hit rates can be useful, but alone they are insufficient for 

explaining how an application’s behavior generates those statistics. Obtaining more accurate and meaningful measurements 

and projections of a memory system’s performance requires understanding how that memory system behaves under a given 

set of access patterns. 

In the symmetric multiprocessors (SMPs) that have become the dominant components of high performance computer 

(HPC) systems, several CPUs can access a shared main memory simultaneously. Applications running on HPCs are usually 

paralleked to take advantage of the SMPs’ concurrent memory access capability. How well the memory system supports the 

concurrent accesses varies widely - for instance, bus-based systems offer little support for concurrent accesses to main mem- 

ory, while switch-based systems claim to eliminate this problem. Unfortunately, no existing memory benchmarks specifically 

address measuring the effect of concurrent accesses on S M P  memory system performance. 

Here we report on a suite of microbenchmarks that we developed to measure the memory performance of SMP-based 

machines. To test the effect of concurrent memory accesses on memory performance, each benchmark is multi-threaded. 

Furthermore, the benchmarks are parameterized to perform either fixed or randomly selected, variably strided accesses, 

allowing them to be configured to emulate the varying access patterns of HPC parallel applications. 

Portability was an important design goal, and thus we implemented the suite using only the standard libraries, commonly 

available on many systems. To the best of our knowledge, these are the first benchmarks specifically targeted for properly 

measuring the memory performance of SMP-based machines running parallel applications. In addition, we complement the 

benchmarks with a tool that can be used to investigate the characteristics of the underlying memory system, such as sizes, 

line lengths, and associativities of caches and TLBs. Since these characteristics directly determine the performance regimes 

of a machine’s memory hierarchy, this tool can greatly reduce the time required to measure the fidl spectrum of memory 

system performance. 

We have used our benchmarks to measure the memory performance of a machine we’ll call blue for purposes of blind 

review and a machine we’ll call snow, two SMP-based HPCs in operation at location and real machine names omitted for 

blind review. We find that the performance of applications with large memory footprints remains largely constrained by 

memory. Furthermore, our analysis indicates that concurrent accesses significantly decrease per-thread memory bandwidth, 

even for memory subsystems specifically designed to support such concurrent workloads for these applications. For example, 

on blue, we find that memory bandwidth drops by 30% to 40% as the number of threads increases fiom one to four. 



The rest of the paper presents our four main contributions as follows. The details of our first two contributions, our tool to 

determine memory system characteristics, and our new microbenchmark suite to assess and to compare the performance of 

different levels in S M P  memory hierarchies systematically and to determine key parameters, are described in Section 2. We 

then present a short study of the memory system characteristics of blue in Section 3. Results from our memory performance 

study on SMP-based HPCs at location name omitted for blind review are analyzed in Section 4. In Section 5, we then briefly 

discuss existing microbenchmark suites, and we provide concluding remarks and directions for future study in Section 6. 

2 Benchmarks 

Just as in uniprocessor systems, the performance of SMP machines - the building blocks for large, scalable, parallel 

computers - is limited by their memory performance. Existing memory benchmarks for uniprocessor systems are not suit- 

able for SMP machines, since they fail to capture the effect of concurrent memory accesses exhibited by parallel applications. 

Furthermore, the underlying memory system architecture of SMP machines is different from (and usually more sophisticated 

than) that of uniprocessor machines. Nonetheless, even these advanced memory system designs do not work well for all 

applications. That is, applications exhibiting certain memory access patterns benefit the most from the more sophisticated 

memory systems of S M P  machines. 

Our benchmarks are multi-threaded to accurately measure the memory system performance when the memory is accessed 

concurrently by a parallel application. The number of threads can be set by the user. In addition, the benchmarks allow the 

user to specify different memory access patterns for these threads. We also provide a separate tool to obtain information 

about the memory system parameters, such as cache sizes and associativities, that interact with access patterns to greatly 

affect memory system performance. 

2.1 Memory Characterization Benchmarks 

Memory system performance is largely affected by the characteristics of the underlying memory system architecture. 

Therefore, having accurate information about the memory system characteristics can significantly reduce the effort required 

to capture the spectrum of a machine’s memory system performance. Knowledge of the memory system parameters is essen- 

tial to fully understanding the performance variations applications exhibit for different configurations (such as from varying 

the number of threads or problem or input data-set size). All the relevant information about data and instruction cache sizes, 

cache line length, TLB size, and so forth, is not always readily available for the HpCs we target. Many are custom-built, 

and therefore differ from their high-commodity cousins in both their composition and the availability of documentation. AI- 

though some of the memory system parameters can often be infened using existing memory performance microbenchmarks, 

the process is usually time-consuming and worse, can give inaccurate information. Furthermore, many memory system char- 

acteristics are difficult or impossible to determine using these inference methods. In any event, the inference methods invert 



Invalid address 

Figure 1. A snapshot of the accesses for a memory regions with stride s. 

the goal of using memory system characteristics to measure the spectrum of memory system performance quickly. For this 

reason, we have developed a tool specifically designed to quickly determine memory system characteristics, which then can 

be used to guide memory performance studies. Here we describe the composition of our tool that determines memory system 

characteristics. Section 3 walks the reader through an example use of our tool to deduce memory system parameters. 

We have used the performance application programming interface (PAPI) [ 121 in developing this tool. PAP1 provides a 

standard application programming interface (API) for accessing hardware performance monitors available on most modern 

microprocessors. These monitors are registers that track events, which are defined as specific signals or states related to the 

processor’s function. By monitoring these events, we can facilitate the correlation between the structure of an application 

code and the efficiency of mapping that code to the underlying architecture. The events monitored by our tool include L1 and 

L2 data/instruction cache misses and TLB misses. 

Our tool uses multiple executions of a simple test program to characterize fully some aspect of the memory system. Each 

execution measures the relevant event for that memory system aspect, e.g., L1 cache misses or TLB misses. The simple test 

program has three parameters: memory region size (region size), number of memory regions (region count) and stride. The 

region size and the stride are specified in units of the size of an address on the machine. 

The program performs a series of accesses through the set of memory regions. Accesses are interleaved across the memory 

regions and the distance between accesses within a memory region is the stride. Figure 1 illustrates the series of accesses 

performed by the program. Note that the accesses reduce to strided accesses when a single region is used. 

The tool performs the series of accesses once (or more) to warm up the cache or load the TLBs. It then initializes and starts 

the performance monitors, performs the accesses again and then stops the performance monitors. We note that many memory 

system characteristics can be accurately determined by performing the accesses a single time; however, some characteristics 

can be obscured by accesses performed in the performance monitor routines themselves. As we discuss in Section 3, we 

compensate for this pollution effect by performing the accesses multiple times in these cases. Pseudocode for the entire 

program used by our tool is shown in Figure 2. 



int region-size; /*  region size in pointers * /  
int region-count; / *  number of regions * /  
char **memory; / *  an array of pointers * /  
int stride; / *  a distance between two linked elements in memory  */  

memory = (char **)  malloc (region-size*region-count*si.zeof(char * I ) ;  
naccesses = region-size/stride; 
for (i=O ; i<naccesses ; i++) 

for(k=O;k<region-count;k++) { 
p= (char **) &(memory[region-size*k+i*stridel ) ; 
if (k+l != assoc) 

else 

*p = next; 

next = &memory[region-size* (k+l) +i*stridel ; 

next = &memory[ (i+l) *stride] ; 

1 
memory[region~size*assoc+naccesses*stridel = -1; 

I p= (char **) &(memory[O]); while (p != -1) p=(char **) *p; /*cache warmup * /  

p= (char **) &(memory[Ol); 
Start performance monitors. 
while (p != -1) p=(char **) *p; 
Stop performance monitors. 

Figure 2. Pseudocode for simple test program. 

2.2 Parallel Memory Performance Benchmarks 

We set out to design a set of programs to study the effects of parallel applications' concurrent memory accesses on mem- 

ory system performance. An application can be parallelized using several different methods, alone or in combination. For 

instance, the application could be multi-threaded, either via OpenMp [14] or other compiler directives, or via a low-level 

threading library such as €'threads [13, 171. Alternatively, the application could use process-level parallelization with mes- 

sage passing communication, such as MPI [15], or interprocess communication through Unix shared memory. Our suite of 

microbenchmarks can test memory performance in the presence of deterministic concurrency (and thus memory contention) 

for applications that use either of the threading options or process-level parallelization via Unix shared memory. Note that 

the communication mechanism used in the process-level parallelization mechanism is not relevant for our microbenchmarks, 

since the operations do not involve interprocess (or inter-thread) communication. Our initial implementation uses O p e W  

due to the ease of implementation provided by its directives. The results presented in Section 4 are from this version. 

Although OpenMp is a standard set of compiler directives, implementations are not yet available on many platforms. In 

addition, many OpenMP implementations automatically use a significant level of optimization, which often requires long 

compilation times and complicates verification that the desired memory access pattern is generated. For this reason, we also 

ported our suite to Pthreads [13, 171. Results with this implementation are consistent with those presented in Section 4. In 



general, the synchronization overhead (described below) is slightly lower with this version, and so the measured performance 

is slightly higher when the same level of optimization is used. 

In our multi-threaded implementations, each thread of a benchmark program is assigned a memory region, and the thread 

generates a given access pattern within that region. The memory accesses emulate various access patterns exhibited by 

parallel applications: the stride can be fixed, or a user can opt to use irregular strides computed by a random number generator. 

This facilitates modeling the behavior of typical multi-threaded parallel applications, where the threads perform similar 

accesses but on different memory regions. 

Our benchmarks are derived from the portion of hbench:OS [5] that measures the performance of memory operations 

that read, write, readwrite, copy, or clear memory locations. As in hbench:OS, our suite includes tests that measure the 

memory bandwidth and latency of these operations using the standard Unix wall-clock timer. Using the commonly available 

wall-clock timer, along with standard threading techniques like OpenMP and Pthreads, makes our benchmarks portable. 

We extend the capabilities of hbenchOS in four ways, even for measuring uniprocessor memory system performance. 

First, we add support for strided access patterns to all of the bandwidth tests. Second, we add support for a random walk 

access pattern to the memory read latency test and the bandwidth tests. Third, we are in the process of adding support to 

allow the access patterns to be read in from compact address traces that can be generated directly from real applications [l]. 

This advanced access pattern support is important for determining the expected performance of a memory system for the real 

applications. For example, hardware prefetch mechanisms are generally limited to unit-stride access patterns (with respect 

to cache lines) [l]. Accurate testing of the memory system should demonstrate that applications with this access pattern 

will achieve significantly higher performance than those without (e.g., applications that use indirection). Previous memory 

microbenchmarks fail to capture this property. 

Finally, in addition to supporting a wide-range of access patterns, we have modiiied hbenchOS to perform measurements 

at the full range of access granularities. We achieve this by implementing a macro generator, a separate program that produces 

the actual code to perform the memory accesses such that the memory operations performed by the tests are encapsulated 

in a C preprocessor macro. This choice limits overhead while allowing the code that performs the accesses to reflect key 

parameters, such as the amount of data accessed (the region size parameter from hbench:OS), the stride between accesses, 

or the number of threads. This solution allows us to use straight-line code for moderate region sizes. Alternatively, our tests 

loop over a large number of memory operations for large region sizes, similarly to the single macro used by hbench:OS. 

This avoids negative performance effects from instruction cache misses. Further, we can increase the number of accesses per 

iteration when the region size is small; this supports accurate measurements for regions as small as a single integer. This 

capability allows us to perform inference studies on cache associativity, as discussed in Section 2.1. Furthermore, our macro 

generator allows us to optimize the implementation of our synchronization operations based on the number of threads in the 

Pthreads version. 



1. Initialization. Set the number of threads and stride. 

2. iterations = ONE-SECOND-WORTH I* determined previously *I 
3. domemop(ite-rations) 
4. Calculate the performance metric. 

Figure 3. Description of the benchmark programs. 

1. Create n threads. 
2. Set a thread variable to point to the beginning of a memory region assigned to the thread. 
3. first synchronization operation. 
4. start-time = current time. 
5. second synchronization operation. 
6. Repeat for i times, where i is the number of iterations requested by main function. 

perform a memory operation. 
7. third synchronization operation. 
8. endtime = current time. 
9. fourth synchronization operation. 

10. return (endtime - start-time). 

Figure 4. Description of domem-op functions. 

The basic procedure for gathering a data point is to run the macro generator for the parameters of interest, compile the 

generated test application, and then run the resulting test. All of this is easily encapsulated in shell scripts; for detailed 

studies, a single script can capture the procedure for multiple data points. Thus, we overcome the hbenchOS restriction to 

region sizes that are of multiples of 200 integers without reducing the usability of our suite. 

Figure 3 shows the structure of the benchmarks, each instance of which contains a separate function that performs the 

memory operations being tested. These functions, specified as do memDp in Figure 3, have a single parameter that controls 

the number of iterations for which the given memory operations are executed. The structure of our do mern ~p functions, 

shown in Figure 4, is again similar to the mechanism used in hbench:OS. The key differences are that our version of each 

function is executed by multiple threads, and the timing operations are synchronized across these threads. In our OpenMP 

implementation, the threads are created simply by making the entire body of the function a parallel region; in the Pthreads 

version, the main thread creates (n - 1) threads, and they all execute the do memap function. 

The synchronization operations around the timing calls ensure that the memory operations are performed concurrently 

by all threads. The first synchronization operation guarantees that the threads are ready to perform their memory operations 

when the timer is started, while the second guarantees that the operations that follow are performed after the timer is started. 

Similarly, the third synchronization ensures that the timer is not stopped until all of the threads have performed their memory 

operations. The fourth synchronization minimizes interference from any threads that complete their operations early. In the 

OpenMP implementation, all of the synchronization operations are essentially barriers (the second and fourth use the implicit 



Stride 1 2 4 7 8 9  

CacheHitRatio 0.87 0.75 0.5 0.12 0.0 0.0 
- 

Table 1. Determining Line Size. 

RegionSize(Bytes) 

CacheHitRatio 

1024 2048 4096 8192 

0.82 0.87 0.87 0.34 

16384 

0.0 

Table 2. Estimating Cache Size. 

barrier at the end of the OpenMP single construct). In the Pthreads implementation, the timer operations are performed in 

the middle of a barrier implemented with condition variables, which results in slightly less overhead 

In both our implementations, the overhead cost relative to the cost of the memory operations is low, since we ensure that 

the iteration parameter is large enough that the timing spans approximately one second total wall-clock time (much like in 

hbench:OS). Results for our benchmarks with a single thread are indistinguishable from those for running the corresponding 

hbench:OS (uniprocessor) benchmarks. Further, results for multiple threads when the region being accessed fits into the L1 

cache are consistent with our single-thread results. Based on these results, we conclude that the synchronization overhead is 

not statistically significant. 

3 Memory System Characterization 

Many of the high-performance computers we target are custom-built, unique machines. For these one-of-a-kind systems, 

detailed information about data and instruction cache sizes, cache line length, TLB size, and so forth, may be difficult to 

obtain (essentially, one may have to track down the people who built that machine). Given this, we wanted a straightforward 

methodology for extracting the memory system parameters from the results of a set of microbenchmark performance data. 

Section 2.1 described the general operation of the benchmarks we designed to address this information gap, and here we 

describe an example in which we determine the details of the L1 caches on company name omitted for blind review node type 

omitted for blind review (i.e. CPU type omitted for blind review processors). We also discuss how to extend the procedure 

directly to capture information about other aspects of the memory system, such as the number of TLB entries. 

As discussed in Section 2.1, our method uses performance monitors; the relevant event for determining L1 cache character- 

istics is L1 cache misses. In order to normalize across the parameters of the tool (in particular, region size and region count), 

our tool estimates the number of addresses accessed as the naccesses variable shown in Figure 2 and reports the L1 cache hit 

ratio as the monitored count divided by this value. Similarly, one can estimate TLB hit ratios by monitoring TLB misses. 

We first deduce the cache line size (in TLB studies, we determine the page size, e.g., the amount of data mapped by a 

single TLB entry). Our tool uses a single large region for this purpose; in our results, we use 1 IvlB for region size. The key 

feature of this region size is that we are confident a priori that it exceeds the size of the L1 cache (for TLB studies, the region 



NumberofRegions 

CacheHitRatio 

Table 3. Determining Associativity. 

1 2 3 4 5  

0.96 0.7 0.49 0.49 0.0 

RegionSize(Bytes) 

CacheHitRatio 

Table 4. Determining Cache Size. 

1024 2048 2559 2560 2561 

0.99 0.93 0.0097 0.0 0.0 

size must exceed the size of memory mapped by the TLBs). As shown in Table 1, as we increase the stride parameter, our 

cache hit ratio estimate declines to zero at stride eight. From this, we are able to deduce correctly that the L1 cache line is 32 

bytes (re. stride eight * four bytes per address). What happens is that for smaller strides, we access more than one entry per 

cache line, thus getting cache hits for those accesses (specifhlly, the number of hits per cache line is the difference between 

the line size and the stride).' 

Next, we obtain a rough estimate of the L1 cache size (for TLB studies, of the amount of data mapped by the TLBs). In 

this experiment, we use a stride equal to the line size discovered as described above and again use a single region. We then 

sample power of two region sizes and observe the cache hit ratios. As shown in Table 2, we see that the cache hit ratio is zero 

when the region size is 16384 (Le. 64 Kbytes) and dramatically decreases when the region size is increased from 16 Kbytes 

to 32 Kbytes. Thus, we can safely deduce that the L1 cache size is at least 16Kbytes, or 4K address values and that studies 

that use a total memory size (ie. region size times number of regions) of this or less will fit into the L1 cache. 

We can now deduce the L1 (or TLB) associativity. In this experiment, we use the region size determined above; this 

ensures that the memory region fits in cache, thus eliminating capacity misses. We set the stride to half of the actual cache 

line size and observe the cache hit ratios as we vary the number of regions. When the number of regions exceeds the cache 

associativity, accessing one of the sets in the cache generates more misses because the access pattern is causing additional 

cache conflicts. As we see in Table 3, the cache hit ration drops to zero when the number of memory regions is increased 

from four to five, from which we correctly deduce that the L1 cache of the CPU type omitted for blind review is four-way 

associative. 

We can now determine the cache size precisely. In this experiment, we use a stride equal to the cache line size determined 

in the first experiment (re. eight) and set the number of memory regions to the associativity that we just determined ( i e .  

four). We then vary the region size. The results ffom our experiment are shown in Table 4; note that we actually repeat the 

monitored accesses ten times in this experiment in order to compensate for the cache pollution effects of the performance 

monitor accesses. Under this experiment, it is clear that when the region size is one-fourth ( i e .  the inverse of the number of 
'We assume the absence of hardware prefetching for this experiment In the presence of hardware prefetching, non-uniform strides would have to be 

used, but the experiment would not change significantly. 



regions) of the cache size or less, all of the regions will fit into cache. As we increase the region size, some of the accesses 

will suffer capacity misses; when total amount of memory accessed (the region size times the number of regions, Le. four) 

exceeds the cache size by exactly one-fourth (again, the inverse of the associativity), then all of the accesses will suffer 

capacity misses.2 From Table 4, we deduce that the 10240 (256W4) address values, or 40 Kbytes is 25% more than the cache 

size. Thus, we correctly determine that the L1 cache of the CPU type omitted for blind review is exactly 32 Kbytes. From 

this, the L1 line size of 32 bytes and the four-way associativity, we can calculate that the L1 cache has exactly 1024 sets. 

Similarly, we can calculate the number of TLB sets in TLB studies (we note that the product of the sets and associativity, i.e. 

TLB entries, is the characteristic of greatest interest). 

Some features cannot be determined this way due to the lack of an appropriate event. For example the CPU type omitted 

for blind review does not support the monitoring of L2 cache misses. In these cases, we must either determine a closely 

related event to serve as a proxy or we must resort to the inference techniques based on performance. We have also designed 

methods to infer the same range of memory system characteristics based on performance measurements [2]. 

4 Case Study: Memory Performance Measurements 

We have measured the memory system performance of two SME' machines at location omitted for blind review, blue and 

snow, using our benchmarks and report the results in this section. Although both of these machines are produced by company 

name omitted for blind review, they have several significant differences. blue has CPU name omitted for blind review, which 

are CISC-based and have relatively small L1 and L2 caches. Snow has CPU name omitted for blind review, which are RISC- 

based, include unit-stride hardware prefetching, have 128-way set associative L1 caches and significantly larger L2 caches. 

In addition, the rest of the memory systems of these machines highlight the contrast in design options available in S W s  - 
the nodes used in blue have a simple bus-based memory system while the nodes in snow connect the CPUs to main memory 

with a crossbar switch. Both use CPU family name omitted for blind review family processors, which allow us to use the 

same compiler to generate executables for fair performance comparison, and yet have different memory system architectures. 

The results are shown in Figure 5 to Figure 9. We show only the results for test cases with large memory footprints in the 

figures because the memory accesses to a region with small memory footprints show little variation in performance regardless 

of parallelism. Reader should refer to [2] for more information. 

Figure 5 plots the memory bandwidth measurements for read accesses. Obviously, those read operations with larger strides 

show poor performance compared to the ones with equal memory footprints (larger memory regions) but smaller strides due 

to lower cache utilization. Furthermore, higher memory accesses caused by cache misses increase the budswitch contention 

by threads. There is some variation in the bandwidths of test cases whose memory footprints fit into the L2 cache, as we 

increase the number of threads (64 KB region with stride of two for blue and 128K region with stride of one for snow, 
*We assume an LRU or pseudo-LRU cache replacement policy in this analysis. With random replacement or most recently used, the required property 

does not hold. We are investigating methods that work with any cache replacement policy. 







blue II snow 

Stride 

,ength 

Region 

Size (KB) 

Number of Threads II Number of Threads 

1 

1241.03 

2508.80 

1261.16 

1262.54 

1262.84 

1243.89 

1253.93 

1258.82 

1261.91 

1262.92 

1226.96 

229.65 

2 

1253.36 

1246.98 

1261.23 

1261.90 

1262.87 

1241.61 

1253.48 

1257.91 

1260.49 

1261.97 

1227.79 

229.41 

3 4 

1253.12 

1258.25 

1259.69 

1261.42 

1262.05 

1241.12 

1 2 3 4 5 6 7 8 

1252.62 

1258.86 

1255.95 

1260.80 

1226.80 

229.33 

Table 5. Memory write bandwidths with padded memory regions. 

blue operates on 332 M H z  CPUs while snow has 222-MHz CPUs. That is, the bzero function only needs to clear locations 

in cache for the cases with small memory footprints and CPU speed dominates the performance in this case. This does not 

occur in bcopy tests, since the bcopy involves memory reads and writes. These operations can be considered to be memory 

read and write operations with stride of one. However, the figures indicate that the memory bandwidths achieved by these 

memory operations are considerably lower than those achieved by memory read and write operations. This is probably due 

to the way the bzero and bcopy functions are implemented. As expected, higher memory bandwidths were obtained by 

the bzero function, because the bcopy function also involves memory reads. For both operations, snow exhibits a large 

variance in bandwidth for the cases with large memory footprints. This is because we did not align the memory regions to 

measure the effect of misaligned memory regions on memory performance. 

The memory read latency results for blue and snow are shown in Figure 8. For blue, the results are consistent with what 

we have observed in earlier experiments: the performance of the test cases with large memory footprints is significantly 

affected by the number of threads and the stride they use. For both blue and snow, the memory reads with larger strides 

exhibit higher memory latencies than those with smaller strides because of lower cache utilization among the test cases with 

the same memory footprint sizes. Regarding the effect of the number of threads, the memory latency increases as much as 

40% as the number of threads increases from one to four. However, the number of threads has little effect on memory read 

latency on snow regardless of region sizes and strides, as shown in Figure 8. Comparing the results for the same region size 





Finally, we also have found that the memory access pattern of an application still dominates its performance, regardless of 

memory footprint size of and the number of threads in the application. 

5 Related Work 

The benchmark suite and methodology we present here is limited to application programs, and focuses on memory perfor- 

mance, but we have found it to be both accurate and portable. We achieve portability by leveraging widely available libraries, 

including OpenMl', Pthreads, and PAPI. Many other benchmark suites have been used to evaluate aspects of memory perfor- 

mance in S M P  systems. We restrict our discussion of these to those used for purposes most closely related to our goals in 

this study. 

While the SPEC92 and SPEC95 [ 161 CPU benchmarks have been widely used to evaluate product performance for com- 

mercial computer systems and to evaluate new microarchitectural ideas in simulation, their working sets are too small to 

adequately stress high-performance memory systems. The SPEC 2000 CPU suite contains benchmarks that are more sensi- 

tive to memory bandwidth and latency, but these whole-program benchmarks are not designed to isolate performance aspects 

of the memory system in particular, and they are designed to run as single-threaded applications on a uniprocessor or single 

node of a multiprocessor system. 

Given the limitations of existing benchmark suites to measure details of memory performance, a number of microbench- 

mark approaches have been developed. For instance, McCalpin's STREAM [ 10,9] microbenchmarks measure sustainable 

memory bandwidth and the corresponding computation rate for simple, unit-stride vector kernels on uniprocessors, vec- 

tor processors, shared-memory systems, and distributed-memory systems. The single-threaded STREAM benchmarks use 

data-sets larger than cache sizes in order to measure memory bandwidth for uncached accesses. 

lmbench [ll] and hbench:OS [5] are simple microbenchmark suites designed to evaluate OS performance. lmbench 

is a portable suite of microbenchmarks, a subset of the suite tests memory read and write bandwidth, bcopy bandwidth, 

and cached file read bandwidth, along with memory read latency on Unix platforms. The hbench:OS builds on lmbench, 

increasing its flexibility and precision in order to better study interactions between the system and the hardware architecture 

on which it runs. 

The importance of using such tools to evaluate system and architectural interactions is highlighted in Brown and Seltzer's 

detailed study of the processor evolution of the x86 architecture: by using their hbenchOS suite, they find that the memory 

system continues to infiuence OS performance significantly, and that poor design choices for the memory subsystem can 

nullify the higher performance characteristics of modem processors [5]. 

de Supinski and May [7] implement the first Posix Threads (Pthreads) benchmark suite and use it to measure system 

performance aspects such as thread creation and the LogP [6] parallel computation performance of standard communication 

mechanisms on four different SMP platforms. Their results show that thread performance varies widely for different mech- 
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anisms and across the different platforms, revealing the opportunity for further optimizations in each system’s support for 

threading. 

Hardware performance monitors greatly enhance the quantity and accuracy of profiling data, expanding the set of events 

that can be measured in isolation or in relation to each other. For instance, Bhandarkar and Ding [4] use the Pentium Pro per- 

formance monitors to characterize the performance of that architecture according to CPI, cache misses, TLB misses, branch 

prediction, speculation, resource stalls, and micro-operations. They present their measurements for the SPEC benchmarks as 

averages per instruction over the application’s entire execution (e.g., for memory data references) or as averages per thousand 

cycles executed (e.g., for cache and TLB misses). PAPI [ 121 and E L  [3] provide standard application programming inter- 

faces for accessing the hardware performance monitors now included in most modem microprocessors; PAPI is becoming 

widely-accepted and is available on a large number of platforms. MPX [SI supports monitoring of conflicting events through 

multiplexing; it is built on top of PAPI and has been integrated into it. 

6 Conclusions and Future Work 

A new set of microbenchmarks for measuring the memory system performance of SMP-based computers is reported in 

this paper. The benchmarks, derived from hbenchOS [5], are multi-threaded to emulate the memory access behavior of 

parallel applications running on SMPs. Each benchmark measures the performance of a specific memory operation executed 

concurrently by a certain number of threads. Users can control the number of threads and the memory access pattern each 

thread follows in these benchmarks. Our benchmarks are implemented using only standard libraries that are commonly 

available on most systems, and hence are portable. In addition, the benchmarks are complemented by a tool that can be used 

to identify the characteristics of the underlying memory system. 

We also have analyzed and reported in this paper the results from experiments in which we measured the memory system 

performance of some of SMP-based high performance computers at locution omittedfor blind review using our benchmarks. 

Our analysis reveals that the performance of applications with large memory footprints is largely constrained by the char- 

acteristics of the underlying memory system, and the number of threads significantly affects their performance, even when 

the memory system is specifically designed to support such concurrent workloads. Furthermore, our results demonstrate a 

signilicant false sharing effect when threads write data on the same memory page, a much larger coherence granularity than 

we anticipated, at least on the bus-based system. Finally, we have found that the memory access patterns of applications still 

dominates their performance, regardless of memory footprint size of and the number of threads in the applications. 

Many modem CPUs offer hardware performance monitors that can be used to count data loads and stores, cache misses, 

and other events. Using these counters, we can obtain very accurate and detailed performance measurements. We have 

used PAPI [ 121, a standardized interface for accessing performance monitors, to implement a tool that determines memory 

system characteristics such as cache size, line sizes and number of TLB entries. Since it’s results can provide guidance in 



where different performance regimes will occur, this tool can greatly speed the process of measuring the full spectrum of 

performance of the memory system. 

The initial implementation of our benchmarks use OpenMP library [14], an easy-to-program method for threading applica- 

tions. However, OpenMP implementations are not available on many platfom and are still not always reliably implemented 

when they are. Further, they frequently force a high level of optimization on the user. Although this may be generally de- 

sirable, the optimizations can invalidate microbenchmark programs such as ours. To overcome these drawbacks, we have 

also implemented our benchmarks in Pthreads. We also plan an implementation that measures the effect of memory system 

contention with process-level parallelism that will use Unix shared memory for interprocess synchronization. 

We have extended the range of memory access patterns that can be measured, even for uniprocessor systems. In addition, 

we have implemented a macro-generator that improves measurement accuracy through parameter-specific access operation 

code. This macro-generator approach allows fine grain measurements that clearly identify specific transitions between mem- 

ory performance regimes. Further, it will allow us to extend the memory access pattern support even further; we are currently 

implementing a compact trace facility that will capture the access patterns of real applications and measure the baseline 

memory performance for those accesses with our microbenchmarks. 
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